

19211 120 MINUTES

1.	The sl A)	owest moving S	of the s B)	eismic waves P	C)	Surface	D)	PS	
2.		e Richter scale		-		stronger tha	ın a 4.0 e	arthquake,	and
	A)	10, 100	B)	2, 4	C)	1, 10	D)	100, 10	
3.	In white A) B) C) D)	hydrosphere, lithosphere, h	hydrosp lithospl ydrospl	res of the Eart here, lithosphere, atmosphere, atmosphere, atmosphere, hydrosphere,	ere ere ere	n order of ind	creasing c	lensity?	
4.	More A)	than 70% of th Volcanoes	e total l B)	neat lost by Ea Earthquakes		t through Seafloor	D)	Faults	
5.	The ho A) C)	eight reference Oblate ellipso Geoid		that most clo B) D)		te ellipsoid	the Earth	a's oceans.	
6.	Negat A)	ive magnetic a Graben	nomaly B)	could be caus Granite	ed by the C)	e presence of Magnetite	underlyi D)	ng Gabbro	
7.	amoui	ree-rings, nt of time that		as existed		-	to rough	ly estimate	the
	A) C)	Basalt flows Stylolites		B) D)	Varve Cross	es -bedding			
8.	Which a. c.		s when i	ements relate t apliftment stop after initial u	ps	b. Pen	iplain is 1	the end protein	
	A) C)	a & b only a, b, c, d		B) D)		& d only & c only			
9.	_	ns separating t		-	e mostly	overland flo	ow occurs	s and no c	lear
	A) C)	Drainage div Thalweg	ide	B) D)	Interf Arete	luve			
10.	A) B) C)	Glacial depos	sits and sits are s sits are u	river deposits sorted, and riv ansorted, and	are both er depos river dep	sorted its are unsort osits are sort	ed	rs?	
	D)	Cilacial depos	sits and	river denosits	are both	unsorted			

11.		of Kutch is an example										
	A)	Intermountain basin	B)		eolake							
	C)	Playa	D)	Salt	water lake							
12.		asing δ^{16} O values from the simulation of the Siwaliks in		positiv	ve numbers in	older to	o younger so	il				
	A)	Reduced rainfall	B)	Incre	eased rainfall							
	C)	Lack of rainfall	D)	Incre	eased evaporation	on						
13.	A)	vidence for Big Bang i contracting and and l absolute zero	nas a pervasiv	e backg								
	B)	expanding and has a zero	pervasive bac	kground	d radiation of 2	.7 K abo	ove absolute					
	C) D)	pulsating and has ren contracting and back		-	-	ound ra	diation					
14.		pus Mons is three time ometers wide. Where i		of Moun	t Everest and i	ts calde	ra is more tha	an				
	A)	Mars	B)	Mari	anas Trench							
	C)	Moon	D)	Venu	ıs							
15.		comets come from a spluto. This remote zone Milky way B)			thousand time Oort cloud	es farthe D)	er from the Su Asteroid b					
16.	Kam	acite and taenite are mi	ineral constitu	ents of								
10.	A)	Stony meteorites	B)		meteorites							
	C)	Stony-iron meteorite	,		osiderites							
17.	Most	of the Farth's surface (ocean currents	are can	ised by							
1 / .	Most of the Earth's surface ocean currents are caused by A) stream flow from continents											
	B)	differences in ocean-										
	C)	the revolution of the										
	D)	the prevailing winds	_ w. v									
18.	Oceaı	nic and continental crus	st differ in									
	A)	composition B)	density	C)	thickness	D) al	ll of the above	9				
19.	Barrie	er islands form										
	A)	on gently sloping co tidal fluctuations and				ıd in are	eas where bo	th				
	B)	on continental rise, w	vith high level	s of way	ve energy and t	idal ran	ge					
	C)	around atolls, with de	eep waters and	d no sed	liment supply							
	D)	on drowned coasts										
20.	An earthquake's P-wave travelled 4,800 kilometers and arrived at a seismic station at evening 5:10. At approximately what time did the earthquake occur?											
	A)	5:02 PM B)	5:08 PM	C)	5:10 PM	D)	5.18 PM					

21.	Rising levels of atmospheric carbon dioxide will cause which of the following changes in oceanic chemistry?												
	A)	Increased prec		n of col	ium e	oorbono	to						
	B)	Decreased pH		on or can	Julii	ai oona	ıe						
	C)	Decreased sali											
	D)	Increased salir	-										
	D)	mercased sam	III y										
22.		nost productive a	areas of	f the oce	an?								
	A)	Estuaries											
	B)	Deep Open Oc		D :	_								
	C)	Coastal Hayya	_		S								
	D)	Coastal Upwel	ning K	egions									
23.		cteristic clay mi				-		-	-				
	A)	Illite	B)	Smecti	te	C)	Palygor	skite	D)	Kao	linite		
24.	Which amongst the following is not a carbonate ooze?												
	A)	foraminifera			B)		lagellate						
	C)	coccolithophor	rids		D)	ptero	pods						
25.	Highe	Higher contents of dissolved oxygen does not match which amongst these?											
	A)	Less salinity			B)		photosyn	_	,				
	C)	Higher minera	l conte	nt	D)	Lowe	er tempera	ture					
26.	a ≠ b =	$\neq c, \alpha = \beta = c$	$\gamma = 90^{\circ}$	° represe	nts th	e crvsta	l system o	of					
	A)	Isometric	•	-1	B)	Tetra	-						
	C)	Orthorhombic			D)		oclinic						
27.	The m	umber of primit	ive spa	ce lattice	es								
	A)	7	B) 1	3		C)	10		D)	1			
28.	Co-or	dination number	r of a c	rystalline	e solic	l is							
	A) Number of particles in the unit cellB) Number of nearest neighbours of a particle												
	C) Number of octahedral voids in a unit cell												
	D) Number of tetrahedral voids in a unit cell												
29.	Which	n of the followin	ng is a c	erystallin	e soli	d?							
	A)	Copper wire			B)	Glass	bottle						
	C)	Polythene bag			D)	Rubb	er ball						
30.	The si	mallest portion of	of a cry	stal whi	ch wh	nen repe	ated in di	fferen	t direct	tions g	enerates		
	the en	tire crystal											
	A)	Lattice points			B)	•	al lattice						
	C)	Unit cell			D)	None	of the me	entione	ed				
31.	The ci	rystal system of	biotite										
	A)	Cubic			B)	Hexa	-						
	C)	Orthorhombic			D)	Mono	oclinic						

32.	Match group I with group II												
	Gro					up II							
	a.	Olivine		1.		silicate							
	b.	Quartz		2.		osilicate							
	c.	Epidote		3.		silicate							
	d.	Biotite		4.	Phyll	losilicat	e						
	A)	a-1, b-2, c-3,			B)		b-3, c-4, d-1						
	C)	a-4, b-2, c-1,	, d-3		D)	a-3, l	b-1, c-4, d-2						
33.	A sn	ow ball garnet i	epreser	nts									
	A)	Post-kinema	tic mine	eral grov	wth								
	B)	Pre-kinemati	ic mine	ral grow	⁄th								
	C)	Syn-kinemat	ic mine	ral grov	vth								
	D)	Non-kinema	tic mine	eral grov	wth								
34.	Whi	ch amongst the	followi	ng is str	ongly p	leochro	oic?						
	A)	Muscovite	B)	Quart	tz	C)	Orthoclase	D)	Hornblende				
35.	Tota	l number of Bra	ıvais lat	tices									
	A)	12	B)	13		C)	14	D)	16				
36.	Whi	ich is correctly i	matched	1?									
	A)	Sillimanite -	Monoc	clinic									
	B)	Orthoclase -	High r	elief									
	C)	Pyroxene – 1	Near ort	hogona	l cleava	ige							
	D) Garnet – Basal cleavage												
37.	Match the correct items												
		Group I				Group II							
	a.	XRF			1.	Spot	analysis						
	b.	XRD			2.	Structure							
	c.	ICP			3.	Solution-based							
	d.	EPMA			4.	Chen	nistry of powd	er					
	A)	a-3, b-1, c-4,	, d-2		B)	a-1, l	b-2, c-3, d-4						
	C)	a-4, b-1, c-3,	, d-2		D)	a-4, l	b-2, c-3, d-1						
38.	Mos	t rock forming 1	ninerals	s are									
	A)	silicates and	oxides		B)	sulph	nides and oxide	es					
	C)	silicates and	sulphid	les	D)	oxide	es and hydroxi	des					
39.	Mon	azite is a											
	A)	variety of igi	neous ro	ock	B)	phosphate of Th, Y, La, Ce							
	C)	oxide of Th,			D)		ty of metamor		, -				
40.	In M	loh's hardness s	cale the	hardes	t oxide	is							
	A)	Diamond	B)		ndum	C)	Quartz	D)	Topaz				

41.	Indicat A) C)	rix of uniaxial +ve min sphere oblate spheroid	neral is	B) D)	ellipsoid prolate sph	neroid		
42.	Calc-al A) C)	kaline basalts are high k-basalts low alumina basalts		B) D)	low k-basa			
43.	Match a. b. c. d. A) C)	the following Group I Granite Tonalite Syenite Diorite a-3, b-1, c-2, d-4 a-4, b-2, c-3, d-1	1. 2. 3. 4.	Group Dacite Andes: Trachy Rhyoli B) D)	ite te			
44.	Match a. b. c. d. A) C)	the rock and mineral as Group I Granodiorite Harzburgite Gabbro Diorite a-2, b-3, c-4, d-1 a-4, b-1, c-3, d-2	1. 2. 3. 4.	Group Hornbl Plagio Olivino	lende – clase – e –		kene	
45.	A) B) C) D)	ite sequence top to bot Radiolarian chert – pil Peridotite – pillow bas Pillow basalt – radiola Gabbro – pillow basal	llow ba salt – ga arian ch t – dole	abbro – ert – do erite dyl	dolerite dyke lerite dyke ce – radiola	ke – radiola – gabbro – rian chert –	rian che peridot peridot	ert ite cite
46.	A) B) C) D)	Eferentiation index is the Quartz + orthoclase + Sum of any three of the Sum of any two Sum of (Quartz + Orthoclase)	albite - ne above	+ nephe e	line + leuci	te + kalsilit		ve minerais
47.	A phan A)	neritic igneous rock wit monzonite B)	th ortho		ligoclase, b C) lati		blende, D)	and quartz granodiorite
48.	Which A) C)	of the following shows Albite – Anorthite Diopside – Anorthite	s comp	lete soli B) D)	d solution s Forsterite Both A an	– Fayalite		

49.	A gn	eiss with a sedimentary proto	lith is										
	A)	Augen gneiss	B)	Banded gneiss									
	C)	Orthogneiss	D)	Paragneiss									
50.	Whic	ch is stable under eclogite faci	es of me	etamorphism?									
	A)	Garnet – orthopyroxene –	clinopyı	oxene – plagioclase									
	B)	Garnet - clinopyroxene -											
	C)	Garnet – orthopyroxene –	hornble	nde – plagioclase									
	D)	Garnet – clinopyroxene –	kyanite	– quartz									
51.		_	ect Barr	rowian sequence of metamorphic zones from									
	_	grade to low grade?	onito z	one \rightarrow Biotite zone \rightarrow Kyanite zone \rightarrow									
	A)	Chlorite zone \rightarrow Garnet zo		Sile \rightarrow Blottle zolle \rightarrow Kyallile zolle \rightarrow									
	B)			→ Garnet zone → Chlorite zone → Biotite									
	C)		e 70ne -	\rightarrow Staurolite zone \rightarrow Garnet zone \rightarrow Biotite									
	C)	$zone \rightarrow Chlorite zone$	C ZOIIC	/ Statione Zone / Garnet Zone / Biotite									
	D)		one →	Biotite zone \rightarrow Kyanite zone \rightarrow Staurolite									
	-,	zone → Sillimanite zone											
52.	The	stable mineral assemblage in 1	metaneli	tes of granulite facies									
<i>32</i> .	A)	staurolite + muscovite + sil	-	•									
	B)	·											
	C)	garnet + orthopyroxene + c											
	D)	garnet + cordierite + K-felo		· ·									
53.	AC F	and AKF diagrams are used of	only for	rocks with									
<i>JJ</i> .	A)	<u> </u>	SiO_2										
<i>E 1</i>	A 4 41-	- 4	44	41									
54.			nt syste	m, the maximum number of phases are:									
	A)	3 B) 2		C) 5 D) 6									
55.	In the	e paired metamorphic belt hig	h pressu	are belt is located									
	A)	at the mid-oceanic ridges	B)	to the continental side									
	C)	at the oceanic side	D)	in obduction zone									
56.	Matc	th the following											
		Group I		Group II									
	a.	amphibolite	1.	lawsonite + glaucophane + jadeite									
	b.	charnockite	2.	amphibole + plagioclase									
	c.	eclogite	3.	quartz + feldspar + hypersthene									
	d.	blueschist	4.	omphacite + garnet									
	A)	a-2, b-3, c-1, d-4	B)	a-2, b-1, c-4, d-3									
	C)	a-2, b-3, c-4, d-1	D)	a-2, b-4, c-3, d-1									

 Goldich's relative weathering potential from high to low is A) Orthoclase – Muscovite – Quartz – Biotite – Olivine – Amphib B) Olivine – Pyroxene – Amphibole – Biotite – Orthoclase – Mus C) Pyroxene – Amphibole – Biotite – Olivine – Orthoclase – Mus D) Muscovite – Orthoclase – Quartz – Olivine – Pyroxene – Amphibole 							MuscoMusco	vite – Quartz vite – Quartz							
58.	Which A)	n rock is fully c Sparite	compose B)	ed of micr Oospari	-	calline (C)	calcite? Micrite	D)	Intramicrite						
59.	Enviro A)	onment suggest Tidal	ting the B)	formation Fluvial	n of he	erringbo C)	one structure Aeolian	D)	Lacustrine						
60.		n sandstone wo z 54%, Feldspa			_			5%							
	A) C)	Quartz Wack Arkose	e		B) D)	Arkosic wacke Quartz arenite									
61.	Hierar A) B) C) D)	archy of chronostratigraphic units Stage – Series – System – Erathem Age – Epoch – Period – Era Period – Era – Epoch – Age Erathem – Era – System – Stage													
62.	The 'I A) C)	Law of Superpo Alfred Weger Smith		of Beds' w	as pro	oposed B) D)	by Steno Philip								
63.	Penns A) C)	ylvanian and M Carboniferou Devonian	-	oian are pa	art of	B) D)	Permian Cambrian								
64.	Homo A) B) C) D)	taxial' geologi Equivalent in Equivalent in Different in a Different in a	age age but ge	t situated	wide a	•									
65.	 A depositional sequence is A) One that never uses water saturation in marker beds as sequence boundaries. B) The term used to indicate that hydrothermal alteration has occurred at certain intervals in time C) A stratigraphic unit composed of a relatively conformable succession of genetically related strata and bounded at its top and base by unconformites or 														
	D)				their correlative conformity. D) Never used in deep marine clastics such as turbidites.										

66.		ch group produced the first comprehensive reconstructions of the Earth's climate ag the last glacial maximum? CLIMAP (Climate Mapping, Analysis, and Prediction) COHMAP (Cooperative Holocene Mapping Project) SPECMAP (Spectral Mapping Project) NRC (National Research Council) brupt return to near-glacial conditions (about 7°C lower, decreased accumulation											
67.	rate, d	rupt return to near-glacial cor lecreased methane, increased and punctuated the transition f Gelasian Tarantian	atmospl	heric du cial to i Northg	ist) that la	sted	appro	ximate	ely 1,300				
68.	Which stage has its Global Boundary Stratotype Section and Point (GSSP) Mawmluh cave formation?												
	A)	Placenzian B) Calabi	rian	C)	Meghala	yan	D)	Chi	ibanian				
69.	Homo A) C)	sapiens, first modern humans 70,000-100,000 years ago 10,000-40,000 years ago	began 1 B) D)	25,000	outside of 0-60,000 y 0-70,000 y	ears	ago	rting a	bout				
70.	Gunz, A) C)	Mindel, Riss, Wurm are terms Forest fire events Sea topography classes	s indicat B) D)	Glacia	l/Interglac sedimenta			;					
71.	genetic	nal dynamothermal metamo	-		_		-	y as	well as				
	A) C)	large faults and overthrusts large orogenic belts.	B) D)	_	nagmatic i geosynclin		sions.						
72.		process of image classificat r accuracy of classes within ound? Fully automated Robotic classification Manual/supervised by a user Unprocessed image interpret	an imaş			_							
73.	What within	is the most common wavel	ength b	and wh	nich elect	ro-o]	ptical	scanne	ers work				
	A) C)	0.3 and 0.9μm 0.9 and 14μm	B) D)		d 14μm of the abov	ve							
74.		space-borne satellite program Sun system and its response to High Resolution Sensors Spot		l and hu Landsa	ıman indu	ced	change		ng of the				

75.	Match the bivalves in I with their ecology in II Group I Group II												
		Group I		1									
	a. 1-	Mytilus		1.	Ceme								
	b.	Pecten		2.	Swin		le a d						
	C.	Ostrea		3.	Infau	lly attac	neu						
	d.	Mya		4.	Iniau	nai							
	A)	a-1, b-2, c-3,			B)	-	o-2, c-1, d-4						
	C)	a-3, b-1, c-4,	d-2		D)	a-2, b	o-1, c-4, d-3						
76.	Dino	saurs are distin	ct from	other N	Mesozo:	ic reptile	es by						
	A)	Large size			B)	Carni	vorous nature						
	C)	Erect stance			D)	Spra	wling						
77.	Shor	test geological r	ange is	for whi	ch of tl	ne follov	wing?						
	A)	Brachiopod	B)	Pelec	ypod	C)	Trilobites	D)	Conodonts				
78.	Edia	caran fossils are	import	ant in									
	A)	Archaen Prot	-		ary								
	B)	Permian Tria	ssic		•								
	C)	Cretaceous T	ertiary										
	D)	Precambrian	Cambri	ian									
79.	A reg	gular echinoid											
	A)	Micraster	B)	Cidar	is	C)	Phymosoma	D)	Both B and C				
80.	Matc	Match the following											
		Group I			<u>Grou</u>	ıp II							
	a.	Cidaris		1.	Trolo	bites							
	b.	Calymene		2.	Gastı	ropoda							
	c.	Natica		3.	Irreg	ular ech	inoids						
	d.	Lopidechinus	3	4.	Regu	lar echi	noid						
	A)	a-4, b-1, c-2,	d-3		B)	a-1, b	o-2, c-3, d-4						
	C)	a-4, b-3, c-1,	d-2		D)	a-1, b	o-2, c-4, d-3						
81.	Most favourable environment to preserve fossils												
	A)	Terrestrial	B)	Lacus	strine	C)	Fluvial	D)	Maritime				
82.	The	chambered part	of ceph	alopods	3								
	A)	Body whorl	-	-	B)	Phrag	gmacone						
	C)	Siphuncle			D)	Apert	ture						
83.	The 1	theory of punctu	ated eq	uilibriu	m was	propose	ed by						
	A)	James Hutton	-	•		- •	-						
	B)	Stephen Goul			-								
	Ć)	Charles darw				e							
	D)	Smith and Sto	eno										

84.	Match	the following							
		Group I			<u>Group</u>	<u>II</u>			
	a.	Muschelkalk		1.	Middle	e Triass	ic		
	b.	Katrol format	ion	2.	Mioce	ne			
	c.	Uttathur stage	;	3.	Cretac	eous			
	d.	Baripada beds	3	4.	Late Ju	urassic			
	A)	a-1, b-4, c-3,			B)		1, c-3,d-4		
	C)	a-4, b-1, c-3, d	d-2		D)	a-1, b-	3, c-2, d-4		
85.	The co	rrect sequence				layas, so	outh to north.		
	A)	Krol – Ramga							
	B)	Ramgarh – Kr							
	C)	Krol – Almora		_					
	D)	Almora – Ran	ngarh –	ITSZ –	- Krol				
86.	_	f most of the bi					~		
	A)	Silurian	B)	Mioce	ene	C)	Carboniferous	s D)	Permian
87.	Arrang	ge from younge		er					
	a.	Jodhpur sands			b.		y shale		
	C.	Kajrahat Lime	estone		d.	Tipam	sandstone		
	A)	c, a, b, d	B)	a, b, c	e, d	C)	d, b, a, c	D)	a, d, c, b
88.	The m	ost fossiliferou	s bed in	Siwali	k Himal	layas			
	A)	Nagri	B)	Kamli	al	C)	Dhokpathan	D)	Chingi
89.		naracteristic flo							
	A)	Glossopteris	B)	Ptilop	hyllum	C)	Dichroidium	D)	Gangamopteris
90.	Age of	f Deccan Traps							
	_	Cretaceous		Precar	nbrian	C)	Jurassic	D)	Triassic
91.	The Sa	argur schist cor	nplex is	.					
	A)	Older than Dh	narwars						
	B)	Younger than	Dharwa	ars					
	C)	Equivalent to	Closepe	et grani	te				
	D)	Younger than	Papagh	ıni					
92.	Walthe	er's Law							
	A)	involves paled	obotany	and inv	olves tl	he deptl	n and temperatu	ires of s	ea water
	B)	establishes the	e geoch	emical s	signatur	e of dif	ferent formation	ns	
	C)						f facies shou	ld be	the same as
		corresponding	•		_				
	D)	differentiates	betweei	n clay n	ninerals	and car	bonates.		
93.		oposheet (scale	1:50,00	00) a be	ed is 5 c	m. The	actual ground t	hicknes	s in
		etre will be:							
	A)	2	B)	2.5		C)	4	D)	5

94.	The radius of the circle in Mohr Stress diagram is											
	A)	Mean stress			B)	Diffe	rential stress					
	C)	Deviatoric str	ess		D)	Least	principal stres	SS				
95.	Most	folding is cause	ed by fo	rces of								
	A)	Compression	B)	Tector	nism	C)	Shearing	D)	Torsion			
96.	Whic	h of the following	ng repre	esents th	ne corre	ect attitu	ude of beds?					
	A)	221, 95			B)	N45V	V, 40SE					
	C)	90/20W			D)	89/S7	75					
97.	Interl	imb angle and s	hape of	f a fold i	s best s	tudied	in a					
	A)	section paralle	el to the	e plunge	of the	fold ax	is					
	B)	section paralle	el to the	e axial p	lane of	the fold	d					
	C)	section paralle	el to the	e dip bed	dding in	the fie	eldwork					
	D)	section whose	e pole is	s the fold	d axis							
98.		ontal slickensid of fault.	les are o	bserved	d on the	surfac	e of a vertical	fault. Id	entify the			
	A)	Normal	B)	Revers	se	C)	Strike slip	D)	Oblique			
99.		hree point const cure like bed, fau			l can be	used to	o establish the	of a	ny planar			
	A)	Strike			B)	Dip						
	C)	Axis			D)	Both	A and B					
100.	Relea	se joints are for										
	A)	Near the surfa			B)		ng uplift					
	C)	During erosio	n		D)	All th	ne above					
101.		h has the highes			_							
	A)	Sandstone	B)	Marbl	e	C)	Granite	D)	Quartzite			
102.		oundation rocks		akud da		_						
	A)	Thick sandsto			B)	Quart						
	C)	Granite and g	neiss		D)	Slates	S					
103.		entage of saline v			ean							
	A)	90	B)	95.5		C)	75	D)	97.2			
104.		r in the zone of		1								
	A)	Ground water			B)		ate water					
	C)	Vadose water	•		D)	Soil v	vater					
105.	_	ologic unit that o										
	A)	Aquifuge	B)	Aquic	lude	C)	Aquifer	D)	Aquitard			

106.	Gossans are developed due to											
	A)	Reduction of										
	B)	Oxidation of s										
	C)	Oxidation of										
	D) Reduction of oxides and sulphides											
107.	Which	of the following	ng does	not bel	ong to 1	ower G	ondwana?					
	A)	Raniganj	B)	Talchi	r	C)	Singareni	D)	Chikiala			
108.		erite is an ore o										
	A)	Tin	B)	Coppe	er	C)	Antomony	D)	Tungsten			
109.		ia graphite depo		-								
	A)	Khondalites	B)	Charnockites		C)	Kodurites	D)	Granites			
110.		hich of the following is not a carbonate?				C \	*****					
	A)	Rhodocrosite	В)	Smith	sonite	C)	Witherite	D)	Celestite			
111.		tone is a ro		-	high	~ `						
	A)	Source	B)	Cap		C)	Reservoir	D)	Both B and C			
112.		oil containing		1		-						
	A)	Paraffinic – na Aromatic	aphthen	e	B) D)	Paraff Aspha						
	C)	Aromanc			D)	Aspiia	ittic					
113.		ım centraliafric			icator p		C	D)	TT			
	A)	Fe	B)	Mg		C)	Cu	D)	U			
114.		are the units on	the y-a	xis of a		-						
	A)	Time			B)	Two-way time						
	C)	Distance			D)	Depth						
115.								he lowe	est category of			
		al resources res		y unaei		-						
	A)	(111) and (334)	/		B)	. ,	and (333)					
	C)	(321) and (11	1)		D)	(222)	and (332)					
116.	-	nones are used i		-	oration	for						
	A)	Producing seis			an an ar a							
	B) C)	Recording ref Keeping the fi				t with o	ach other					
	D)	To monitor di		IKCIS III	Comaci	WILLI Co	acii otiici					
117.	Which	n space-borne sa	atellite r	rooran	nme has	മ ഹേചി	of improving	underete	anding of the			
11/.		-	-	_		_			_			
	A)	arth –Sun system and its response to natural and human induced changes? Earth Observing System B) High Resolution Sensor										
	C)	Land Sat	<i>ا</i> - ا ل		D)	Spot						

Energy that is not seen by eyes and is recorded from surface of Earth is called								
A)	A) Zonal energyC) Infrared energy)	Meridian energy False energy			
C))				
					C)	sec^2	D)	tan ²
Altitu A)	•	-		n	C)	36,000 km	D)	50,000 km
	A) C) Senso A) Altitu	 A) Zonal energy C) Infrared energy Sensor IFOV is proparation A) sin² Altitude of geostation 	 A) Zonal energy C) Infrared energy Sensor IFOV is proportiona A) sin² B) Altitude of geostationary sa 	A) Zonal energy B) C) Infrared energy D) Sensor IFOV is proportional to A) \sin^2 B) \cos^2 Altitude of geostationary satellites	A) Zonal energy B) C) Infrared energy D) Sensor IFOV is proportional to A) sin ² B) cos ² Altitude of geostationary satellites	A) Zonal energy B) Meric C) Infrared energy D) False Sensor IFOV is proportional to A) sin ² B) cos ² C) Altitude of geostationary satellites	A) Zonal energy C) Infrared energy D) False energy Sensor IFOV is proportional to A) \sin^2 B) cos ² C) sec ² Altitude of geostationary satellites	A) Zonal energy C) Infrared energy D) False energy Sensor IFOV is proportional to A) \sin^2 B) \cos^2 C) \sec^2 D) Altitude of geostationary satellites